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We examine a naming game with two agents trying to establish a common vocabulary for n objects. Such
efforts lead to the emergence of language that allows for an efficient communication and exhibits some degree
of homonymy and synonymy. Although homonymy reduces the communication efficiency, it seems to be a
dynamical trap that persists for a long, and perhaps indefinite, time. On the other hand, synonymy does not
reduce the efficiency of communication but appears to be only a transient feature of the language. Thus, in our
model the role of synonymy decreases and in the long-time limit it becomes negligible. A similar rareness of
synonymy is observed in present natural languages. The role of noise, that distorts the communicated words, is
also examined. Although, in general, the noise reduces the communication efficiency, it also regroups the
words so that they are more evenly distributed within the available “verbal” space.
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I. INTRODUCTION

Computational modeling is becoming more and more an
important tool to study language evolution �1–5�. The central
assumption of such an approach is that language is a com-
plex adaptive system that emerges from local interactions
between its users and evolves and complexifies according to
biological-like principles of evolution and self-organization
�6–8�. This is by no means the only possibility since a num-
ber of researches claim that language does not have the adap-
tive values and is merely a by-product of having a large and
complex brain or of some other skills �9,10�. Recently, how-
ever, adaptationists got strong support from Pinker and
Bloom, who in their influential paper �11� argued that lin-
guistic abilities require complex and costly adaptations �e.g.,
large brain, longer infancy period, and descended larynx� and
the language origin can be explained only by means of natu-
ral selection theory.

Since language was invented only in one lineage, and is
therefore unique to human species, its appearance has the
same status as the origin of genetic code or the eukaryotic
cell. The emergence of language was thus listed as one of the
major transitions in the evolution of life on Earth �12� and it
is certainly interesting to ask which factor is responsible for
it. Some claims were made that most likely it was the com-
bination of selective evolutionary pressure and unique con-
text that led to the emergence of human language �13�.

Language has also led to the novel inheritance system
�14� and opened up the possibility for cumulative cultural
evolution and creation of complex society �15� with collabo-
ration of large nonkin groups �16�. While our willingness to
share information with relatives is rather easy to reconcile
with Darwinian evolution �kin selection �17��, linguistic in-
teractions with nonkin individuals are harder to understand.
Indeed, since speaking is costly �it takes time, energy, and
sometimes might expose a speaker to the predators�, and
listening is not, such a situation seems to favor selfish indi-
viduals that would only listen but would not speak. More-
over, in the case of the conflict of interests the emerging
communication system would be prone to misinformation or

lying. A possible resolution of these problems is based on
reciprocal altruism �18�. However, there is growing evidence
that cooperation and altruistic behavior between humans are
very complex and typically cannot be explained using stan-
dard reciprocal altruism arguments �16�.

As an alternative explanation Dessalles �19� suggests that
honest information is given freely because it is profitable—it
is a way of competing for status within a group. In this
context, interesting computer simulations were made by Hur-
ford �20�. He considered agents engaged in communicative
tasks �one speaker and one hearer� and their abilities evolved
with the genetic algorithm that was set to prefer either com-
municative or interpretative success. Only in the former case
the emerging language was similar to natural languages
where synonymy was rare and homonymy tolerated. When
interpretative success was used as the basis of selection then
the converse situation �unknown in natural language� arose:
homonymy was rare and synonymy tolerated.

Indeed, synonymy in the pure variety is rare. Usually, it
can be found in two languages being in contact �napkin/
serviette�, handy abbreviations �bicycle/bike� or some spe-
cialized euphemistic domains related, e.g., with sex, bodily
functions, or death �die/expire/…� �20�. Linguists proposed
various explanations of the human avoidance of synonymy.
Clark attributes it to a presumably inborn tendency of hu-
mans to seek and create new meanings, rather than accept
one meaning for several different forms �21�. Markman notes
that children have a tendency to assume that no two words
may overlap in meaning �22�. A similar point of view is
expressed in Wexler’s uniqueness principle which prevents
the child from internalizing more than one form per meaning
�23�. On the other hand, homonymy seems to be more com-
mon in natural languages. One can easily think of many
words having multiple and unrelated meanings �e.g., ab-
stract, compound, second, and present�. At first sight one can
consider this as surprising since synonymy does not diminish
communicative efficiency but homonymy in principle does.
Let us also notice that computer languages quite often accept
synonymy �e.g., aliases in command systems� but typically
do not handle homonymy.

PHYSICAL REVIEW E 80, 056107 �2009�

1539-3755/2009/80�5�/056107�8� ©2009 The American Physical Society056107-1

http://dx.doi.org/10.1103/PhysRevE.80.056107


In our opinion an apparent asymmetry between rare syn-
onymy and relatively common homonymy is an important
and generic feature of natural languages and might be used
as a test of various computational models of language devel-
opment. In the present paper we examine a version of the
Steels naming-game model �25� where two agents exchange
information concerning a certain number of facts/objects
from their reality and try to establish a common vocabulary.
The emerging language features some degree of homonymy
and synonymy. Although homonymy diminishes the commu-
nicative efficiency it turns out to be a persistent feature of the
language. On the other hand, synonymy is only a transient
feature of the language and its frequency of appearance di-
minishes over time. The asymmetry between homonymy and
synonymy can be thus understood within a rather simple
naming-game setup, without revoking evolutionary argu-
ments that speaker more than hearer benefits from the con-
versation �20�. Let us also notice that stable homonymy and
transient synonymy was also reported by Puglisi et al. in a
model of formation of categories �24�. We also examine the
role of noise that might distort communicated words. Our
results show that noise plays �or played� an important role
and could affect the distribution of words in a “verbal”
space.

II. MODEL

More than a decade ago Steels proposed the naming-game
model, which quickly became one of the basic models of the
emergence of linguistic coherence �25�. In this model we
have a group of agents that communicate with each other
trying to establish a common vocabulary on a certain number
of objects. Typically, after some time, they reach a state of
linguistic coherence where they to a large extent �or even
perfectly� understand each other. In the original formulation
the naming-game model describes cultural transmission
within a single generation of agents. Evolutionary versions
with mutations and selections of agents taking place were
also studied �26,27�. In most works on the naming-game
model only a simple structure of the emerging language is
allowed and homonymy is very often excluded �28–30�.
Such approaches effectively can be regarded as if agents
would talk on a single object �30�. Although it drastically
simplifies the language structure such an approach allows to
consider many agents and thus to take into account some
elements of the social structure �29�. But such works consti-
tute only one end point of the computational dilemma: many
agents of simple architecture versus few but with complex
architecture. At the other side we have models of few agents
but able to develop language of much larger complexity. To
examine linguistic structures such as homonyms or syn-
onyms, one has to consider an n-object version of the
naming-game model. Some results on n-object naming-game
model have been already reported �31,32�. Let us also notice
that the main emphasis in the naming-game model is on the
cultural �single-generation� transmission of language. An al-
ternative approach to the language evolution where intergen-
erational interactions play an important role is called iterated
learning model and was used in various contexts �33�.

Our model is a two-agent version of the naming game. It
is assumed that agents are embodied in a shared environment
and communicate on a certain number of facts/objects from
this environment. Agents in turns take the role of speaker and
hearer. Speaker selects an object from the environment.
Then, using its form-meaning relations, speaker selects a
word that is assigned to the object. The word is communi-
cated to hearer, which uses its own meaning-form relations
to guess the communicated meaning. We also assume that
after such a communication attempt there is a possibility to
check �e.g., by pointing at the object� whether hearer guessed
the communicated meaning correctly. Established in such a
way success or failure modifies the structure of meaning-
form relations of agents to facilitate future communication
attempts.

Both agents refer to the common set of n objects and with
each object each agent relates the corresponding inventory
�inventories are numbered from 1 to n�. Each inventory
stores up to l words that are used to describe the correspond-
ing object. With each word in a repository the weight w is
associated that controls the stochastic process of selecting a
communicated word �speaker� and decoding the meaning
�hearer�. The idea of assigning weights to words was already
used in some naming-game models �32�. For computational
purposes the words are represented by integer numbers from
1 to r but more natural representations using strings of letters
are also possible. The parameter r can be thus interpreted as
corresponding to the capacity of the “verbal space.” More
detailed rules of our model are specified below:

�i� Speaker randomly selects an object. From the inven-
tory that corresponds to the selected object speaker selects
the communicated word xc. The word is selected taking into
account the weights corresponding to each word in this in-
ventory. We used the method of roulette selection.

�ii� Hearer tries to guess the meaning of the communi-
cated word and decodes it. To do that, hearer first calculates
measures of similarity sk�xc� of the communicated word with
kth inventory �k=1,2 , . . . ,n�. The measures sk�xc�, which are
calculated using the following formula:

sk�xc� =
1

�
i

wi

�
i

wi

� + �xi − xc�
, k = 1,2, . . . ,n , �1�

are then used to select the inventory that fits the communi-
cated word �roulette selection again but with sk�xc� as a
weight of an inventory�. In Eq. �1� xi and wi are the ith word
and its weight, respectively, and the summation is over all
elements of the kth inventory �numerated with i�. The closer
xi to the xc is, the larger are its contributions to the similarity
measure sk�xc�. The role of � in Eq. �1� is to keep sk�xc� finite
even when the communicated word is the same as one of the
words in the kth inventory. Having calculated sk�xc� for all
inventories, hearer uses the roulette selection to choose the
inventory that fits the communicated word. Since in our cal-
culations � takes rather small values, inventories that contain
a communicated word �or words that are very close to it� get
large similarity measures and have larger probabilities of be-
ing selected.
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�a� When the inventory selected by the hearer has the
same number as that selected by speaker, we consider this as
a communicative success. In such a case both agents increase
the weights associated with the communicated word by one.
If in the hearer inventory there is no such a word �but it still
has decoded the meaning correctly� we add the communi-
cated word to this inventory with unit weight �if the inven-
tory contains already l elements we first remove the word
with the smallest weight�.

�b� When the inventory selected by the hearer has a dif-
ferent number than that selected by the speaker we consider
this as a communicative failure. In such a case speaker de-
creases the weight associated with the communicated word
by one. Hearer inspects its inventory that has the same num-
ber as that selected by the speaker. If it contains the commu-
nicated word, its weight is increased. Otherwise, hearer adds
the word to this inventory with unit weight.

Our simulations show that the model is relatively robust
and small changes in its rules or of values of parameters do
not change much the behavior of the model. In particular,
similar results are obtained when an increase or decrease in
weights in the case of success or failure is done either with a
fixed or weight-dependent amount �e.g., the larger the
weight, the smaller the increase�. Let us also notice that the
increase or decrease in weight in the case of success or fail-
ure, respectively, resembles the reinforcement learning ap-
proach and some naming-game models with a similar dy-
namics have been already examined �31�.

�iii� In some of our simulations we have examined the
effect of noise that distorts the communicated word. More
precisely, we assume that with the probability p the commu-
nicated word chosen by speaker becomes

x → x + � , �2�

where � is a random integer number uniformly drawn from
the interval �−a ,a� and a is the amplitude of noise �with the
probability 1− p the communicated word does not change�. If
x calculated using Eq. �2� happens to be outside the range
�1,r�, a different instance of � is generated.

An example that illustrates the above rules is shown in
Fig. 1. Table I collects all parameters of the model.

III. NUMERICAL CALCULATIONS

To start the simulations an initial configuration is needed.
We assume that at the beginning each agent has in each
inventory a single word �randomly selected from the interval
�1,r�� with unit weight. To examine the behavior of the
model we measured various quantities that in some cases
were averaged over certain time intervals or over indepen-
dent runs. �We define the unit of time as corresponding to 2n
communication attempts.� Of particular interest is the com-
municative success rate of an agent, which is defined as a
fraction of successful communication attempts. Some other
quantities that allow us to analyze in more details the struc-
ture of the emerging language and of the communication
process will be specified later.

A. Basic properties

Simulations show that typically the agents correlate their
inventories so that their communication maintains a rather
large success rate �Fig. 2�a��. Of our further interest will be
words that in a given inventory have the largest weight.
Since some of them might be the same for different invento-
ries, we calculated the number of different largest-weight
words in the resulting language. It turned out that this num-
ber is close to the number of objects n �Fig. 2�b�� and most
of the communication attempts use these largest-weight
words �Fig. 2�c��. It means that in the majority of cases com-
munication between agents proceeds as follows: speaker se-
lects an object and the largest-weight word from the inven-
tory corresponding to this object becomes the communicated
word. For small � the similarity measure, as calculated from
Eq. �1�, is large only for the inventory that contains the com-
municated word �provided that the weight of this word is not
very small�. Usually, it happens to be the inventory corre-
sponding to the same object as selected by speaker and thus
such an attempt is successful. For larger ��	0.1� the com-
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7890
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3609
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9974
5001

7890

1244
5667
1221

6658
7892
1012
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9342
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Speaker Hearer

FIG. 1. A communication attempt with n=4 objects. Speaker
selected the second object and one of the words that are associated
with this object. The selected word is communicated to the hearer
that then decodes its meaning. Since the decoded object is the same
as that chosen by the speaker, the above example is considered as a
success. The selection of the communicated word and its decoding
are stochastic in nature �see the main text� and controlled by
weights w associated with each word.

TABLE I. Parameters of the model and ranges of values used in
the simulations.

Parameters Description �values used in simulations�

n Number of objects �100�n�103�
l Memory size—maximum number of words

corresponding to an object �5� l�20�
r Words—positive integer numbers not greater than

r �500�r�104�
� Ensures that similarity measure in Eq. �1� is finite

�10−5���10−1�
p ,a Parameters describing noise �see Eq. �2��

�0� p�0.05, 0�a�10�

LANGUAGE STRUCTURE IN THE n-OBJECT NAMING GAME PHYSICAL REVIEW E 80, 056107 �2009�

056107-3



munication between agents deteriorates and both the success
rate and the number of different largest-weight words dimin-
ish.

There are two factors that contribute to the communica-
tion failure. First, it is the finite number of � that implies that
similarity measure �1� for different words is positive and thus
selection of the inventory made by the hearer might lead to
communication failure. Second, homonyms, which as we
shall see might appear in our model, also might lead to the
communication failure. Their role is discussed in detail in the
next subsection.

In Fig. 3 we present the distribution of largest- and
second-largest-weight words that is established after a suffi-
ciently long transient. Relatively uniform distribution indi-
cates that these words are uncorrelated. Since some of the
second-largest weight words, as discussed below, might be
considered as synonyms �of the largest-weight words�, the
lack of correlations agrees with the observation that syn-
onyms in natural languages are not similar to each other.

B. Homonymy and synonymy

Since agents communicate on more than one object the
resulting language might contain homonyms and synonyms.

Homonymy appears when a word can be associated with
more than one object and synonymy when an object can be
associated with several words. However, the rules of our
model contain probabilistic factors and so the definition of
homonymy and synonymy must take this fact into account.
We define homonymy as a word that with a relatively large
probability can be associated with several objects. Typically
such a situation occurs when a word uttered by the speaker
appears in more than one inventory of the hearer as the
largest-weight word. Consequently, the number of different
largest-weight words is a measure of homonymy of the lan-
guage �the smaller this number is, the more frequent the
homonymy is�. Analogously, synonymy most often occurs
when speaker and hearer in their inventories corresponding
to a certain object have the same largest- and second-largest-
weight words. In such a case, no matter which of them is
selected for communication, it is quite probable that the
meaning will be guessed correctly. Examples of such situa-
tions are shown in Fig. 4.

Since homonymy typically occurs when more than one
inventory has the same largest-weight word, we examined in
more detail the number of different largest-weight words and
the results are shown in Fig. 5. One can notice that as the
interval r from which the words are drawn increases, this
number tends to the number of objects n and that means that
homonyms become less frequent. This is because for large r
there are many words to choose from and the probability that
two inventories have the same largest-weight word de-
creases. Let us notice, however, that homonymy might ap-
pear also in some naming-game models with an unbounded
reservoir of words �in our case it corresponds to the limit r
→�� �34�.

Naively, one might expect that the number of different
largest-weight words can be obtained from the simple proba-
bilistic arguments: let us select randomly n numbers from the
interval �1,r� and check how many of them are different. We
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FIG. 2. The time evolution of �a� the success rate; �b� the num-
ber of different largest-weight words; and �c� the fraction of second-
largest-weight utterances. Calculations were made for n=500, l
=10, and r=103.

0

200

400

600

800

1000

0 200 400 600 800 1000

se
co

nd
m

ax
-w

ei
gh

tw
or

d

max-weight word

FIG. 3. The distribution of largest-weight words and the largest-
weight words after simulations of time t=103. Calculations were
made for n=500, r=103, �=10−5, and l=10. Different plotting sym-
bols �circles; crosses� correspond to different agents. Quite often
both agents have in some inventories �that usually corresponds to
the same object� the same largest- and second-largest-weight words
and in such a case the plotted symbols overlap.
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did such calculations and numerical results are also shown in
Fig. 5 �small squares along the t=0 axis�. One can notice that
this agrees with simulations but only initially. The subse-
quent evolution of the model changes the initial distribution
and the number of different largest-weight words increases in
time. Since success rate and the number of different largest-
weight words behave similarly �Figs. 2�a� and 2�b��, such a
redistribution reduces homonymy and enables more efficient
communication between agents. However, saturation below
the maximal value �seen in Fig. 5�, equal to the number of
objects n, indicates that homonymy is a persistent feature of
language.

Figure 2�c� shows that a fraction of communication at-
tempts is made with the second-largest weight words. When
such an attempt is successful it usually means that there is
more than one word that is associated with a given object,
which for our purposes defines synonymy. That such words
do ensure a relatively large success rate is confirmed in Fig.
6, where the time evolution of the success rate of utterances
with largest- and second-largest-weight words is shown. In-
deed, relatively large success rate of utterances with second-
largest weight words indicates that more than one word can
be associated with some objects; i.e., some words can be
treated as synonymous. However, the decrease in frequency
of second-largest-weight utterances seen in Fig. 2�c� and �re-
lated with that� large fluctuations seen in Fig. 6 show that the
role of synonyms diminish in time. In the long-time limit
synonymous second-largest-weight words become irrelevant
since entire communication proceeds with largest-weight
words only.

A trace of synonymy can also be seen in Fig. 3. Indeed,
overlapping plotting symbols �circles and crosses� show that
both agents have a substantial fraction of the same largest-
and second-largest-weight words in corresponding invento-
ries. This plot, however, does not tell us that for many of
these pairs, the weight of the largest-weight word is so much
dominant that other words from this inventory are essentially
negligible �since they are never used�, especially after long
simulations. Although quantitative estimation of the role of
homonymy and synonymy depends on parameters, some ge-
neric behavior seems to characterize our model. In particular,
homonymy, although rare for large r, is a persistent feature
of the language: except for the initial time interval, fre-
quency of homonymous utterances remains constant. On the
other hand, the frequency of synonymous utterances de-
creases in time.
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FIG. 4. Homonymy occurs when a word �1244� can be associ-
ated with more than one object. Synonymy occurs when an object is
associated with more than one word.
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FIG. 5. The time evolution of the number of different largest-
weight words for n=500, l=10, and �=10−5. Small squares at the
t=0 axis indicate the values for the randomly drawn words �see
text�. One can notice that during simulations a redistribution of
largest-weight words takes place and that reduces the number of
homonyms in the language. However, the number of largest-weight
words saturates below n and that shows that homonyms are a per-
sistent feature of language. For large range r the �almost�
homonymy-free language is obtained.
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FIG. 6. The time evolution of the success rate of utterances with
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rate of utterances with second-largest weight words indicates that
more than one word can be associated with some objects; i.e., some
words can be treated as synonyms. Increasing in time fluctuations
of the second-largest weight data are due to poor statistics caused
by the decreasing number of such utterances �i.e., synonymy de-
creases over time�. Simulations were made for n=500, r=103, l
=10, and �=10−5.
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Provided that the model bears some similarity to the evo-
lution of natural languages, one can expect that in present-
day languages, that correspond to the long-time limit of the
language that emerge in our model, synonymy, in agreement
with some observations, would be rare. It was already sug-
gested by Hurford �20� that rareness of synonymy is caused
by the asymmetry of evolutionary benefits between speaker
and hearer. Let us emphasize that our model uses only cul-
tural �single-generation� mechanisms for the evolution of
language. The results thus show that understanding of some
basic features of homonymy and synonymy can be obtained
within a much simpler model that does not take into account
any evolutionary effects. Let us also notice that persistent
homonymy and transient synonymy was also reported by
Puglisi et al. �24� in an interesting model of category forma-

tion. In their model, which also includes cultural dynamics
only, agents are exposed to the continuous environment �i.e.,
with an infinite number of objects� and such a behavior was
observed even when the reservoir of possible words is un-
bounded. As a matter of fact transient nature of synonymy is
a more generic property of the naming game, although in
some models persistent synonymy was reported �35�.

C. Effect of noise and distribution of words

All calculations reported so far were made for the noise-
less case �p=0�, i.e., under the assumption that communica-
tion of a word to another agent is perfect and cannot change
the word. Now we relax this assumption and examine the
role of noise that might distort the communicated word as
specified in Eq. �2�. In our opinion, especially at early stages
of the evolution of language communication could be ex-
posed to such a disturbance.

Because of noise, the received word might be different
than that uttered by the speaker. If the difference is small, the
hearer might still correctly decode it. We expect that this will
be often the case when the amplitude of noise is small or the
largest-weight words are well separated so that the small
change does not lead to the overlap with some similar words.
As we have already noticed �Fig. 5�, during the evolution of
the model a redistribution of largest-weight words takes
place, which reduces homonymy and improves communica-
tion between agents. Figure 7 shows that noise greatly mag-
nifies such a redistribution. In this figure we present the dis-
tribution of distances d between neighboring largest-weight
words compared with the distribution where largest-weight
words are selected randomly. One can notice that noise leads
to the more even distribution �within the available range�
with substantially reduced number of overlaps �d=0� as well
as of large voids.

Noise also changes the distribution of second-largest-
weight words. Accumulation of points along the diagonal
line seen in Fig. 8 shows that in presence of noise the second
largest-weight words are very often close to the largest-
weight words. In such a case they should not be considered
as synonyms �that are usually much different� but as the
same words but, e.g., with a slightly modified pronunciation.
When noise is absent there is no such accumulation �Fig. 3�.

It is possible that noise played an important role in the
evolution of language and helped to redistribute words
within available phonetic space �Fig. 7� and/or reduced the
number of synonyms �Fig. 8�. Actually, it would be interest-
ing to obtain the analog of the distribution of distances be-
tween words shown in Fig. 7, but obtained for natural lan-
guages. Although the very definition of distance between
words remains under debate, various algorithms of mainly
phonetic comparison are already in use �36� and some statis-
tical analysis in principle could be made.

IV. CONCLUSIONS

In the present paper we studied an n-object naming game
between two agents and examined the structure of the emer-
gent common vocabulary. Our results show that after an ini-
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tial transient a linguistic synchronization is reached and effi-
cient communication of agents is established: speaker selects
an object and a corresponding word that is communicated to
hearer that usually correctly decodes the intended meaning.
Our main results are twofold:

�i� A small fraction of communication attempts use hom-
onyms or synonyms. Although homonyms reduce the effi-
ciency of communication they appear to be a rather persis-
tent feature of the language. On the other hand, synonyms do
not reduce such an efficiency but are gradually expelled from
the language. The model supports, thus, the observation that
nowadays in natural languages synonyms are rare, but re-
lated observations were also made in another type of models
by Puglisi et al. �24�. Moreover, it seems to us that the
present model, that has only one generation of agents and
does not refer to the notion of fitness, is simpler than that
used by Hurford �20� where the rareness of synonymy was
attributed to the asymmetry of payoff between speaker and
hearer.

�ii� The second main result is to show that noise plays �or
played� an important role in the evolution of language. It
enhanced redistribution of words and probably contributed to
the reduction in synonymy of the language.

It would be desirable to extend our model to a multiagent.
Let us notice, however, that such simulations are likely to be
computationally very demanding �in such a case the dynam-
ics of the model will be slower and the amount of calcula-
tions needed for the model to reach the linguistic synchroni-

zation will be much larger�. An additional problem might be
related to examining the structure of emerging language and
the present paper shows that even the preparatory �two-
agent� version provides rich and nontrivial behavior. Since,
however, human linguistic interactions take place in a mul-
tiagent regime, such an extension should be examined. An-
other possibility might be to introduce a fitness function and
implement evolutionary changes that in some versions of
naming-game models are known to result in qualitatively
novel behavior �26�. Let us notice that our model neglects,
among others, sound-merging effects as well as interactions
of a given language with spatially neighboring languages.
Such factors often provide an important source of homonyms
and synonyms. These factors might be taken into account in
a multiagent version of our model. Moreover, it would be
interesting to examine a situation where the number of ob-
jects n could differ from the number of inventories, would
depend on an agent, and in addition would be determined in
some dynamical process of category formation as in the pa-
per of Puglisi et al. �24�.
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